Mark Scheme 4728
 January 2006

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 \& (i)

(ii)

(i)

(ii) \& | $0.3 \mathrm{~g}-T=0.3 \mathrm{a} \text { and }$ $\mathrm{T}-0.4 \mathrm{~g}=0.4 \mathrm{a}$ $\begin{aligned} & -0.1 \mathrm{~g}=0.7 \mathrm{a} \\ & \mathrm{a}=-1.4 \end{aligned}$ |
| :--- |
| See appendix for substituting $\begin{aligned} & \mathrm{a}=-1.4 \\ & 0=2.8 \mathrm{t}-1 / 21.4 \mathrm{t}^{2} \\ & 0=\mathrm{t}(2.8-0.7 \mathrm{t}) \end{aligned}$ |
| Time taken is 4 s |
| OR $(0.3+0.4) a=(0.3-0.4) g$ $\begin{aligned} & \mathrm{a}=-1.4 \\ & 0=2.8+-1.4 \mathrm{t} \\ & \mathrm{t}=2.8 / 1.4 \end{aligned}$ |
| Time taken is 4 s | \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M2 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& [4]

[3]

$[4]$

$[3]$ \& | For using Newton’s second law (either particle) condone 0.3ga,0.4ga and !(LHS) |
| :--- |
| Both correct. SR Accept $T-0.3 g=$ 0.3 a etc as correct only if consistent with a shown as upwards for P on c's diagram |
| Eliminating T |
| AG |
| For using $s=u t+1 / 2$ at 2 with $s=0$ |
| Solving QE |
| From correct equation only |
| For using $\left(m_{1}+m_{2}\right) a=\left(m_{1}-m_{2}\right) g$ No application of $S R$ shown above AG |
| For using $\mathrm{v}=\mathrm{u}+$ at with $\mathrm{v}=0$ |
| Solve for t, and double or any other complete method for return time |

\hline
\end{tabular}

2	(i) (ii)	$\begin{aligned} & \text { Tsin } \alpha=0.08 \times 1.25 \\ & \quad=0.1 \\ & \mathrm{~T} \cos \alpha=0.08 \mathrm{~g} \\ & \\ & \\ & \mathrm{~T}^{2}=0.1^{2}+0.784^{2} \text { or } \alpha= \\ & 7.3^{\circ} \\ & \mathrm{T}=0.79 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[2]	Newton's second law condone cos, and 0.08 g for mass but not part of force Resolving forces vertically, condone sin May be implied by $\mathrm{T}^{2}=0.1^{2}+0.784^{2}$ For eliminating α or T $\alpha=7.3^{\circ}$ or better Accept anything rounding to 0.79

4	(i)	$F=12 \cos 15^{\circ}$ Frictional component is 11.6 N	M1 A1 [2]	Resolve horizontally (condone sin) Accept 12cos 15°
	(ii)	$N+12 \sin 15^{\circ}=2 g$ Normal component is 16.5 N	M1 A1 [2]	Resolve vert 3 forces (accept cos) AG
	(iii)	$11.591 \ldots=\mu 16.494 . .$ Coefficient is $0.7(0)$	M1 A1ft	For using cv $F=\mu \mathrm{cv} N$ Ft cv F to 2 sf. $\mu=0.7027 \ldots$...
	(iv)	$\begin{aligned} & N=2 g \\ & F=19.6 \times 0.7027 \ldots \\ & 20-13.773 \ldots=2 a \end{aligned}$ Acceleration is $3.11 \mathrm{~ms}^{-2}$ MISREAD (omits "horizontal") $\begin{aligned} & N=2 g-20 \sin 15 \\ & F=0.7027 \times 14.4 \end{aligned}$ $20 \cos 15-10.14=2 a$ Acceleration is $4.59 \mathrm{~ms}^{-2}$	B1 M1 M1 A1ft A1 [5] MR-1 B1ft M1 M1 A1ft A1ft [4]	For using Newton's second law cv Tractive - cv Friction (e.g. from (i)) Accept either 3.11 or 3.12 only All A and B marks now ft. Subtract "MR-1" from initial B1 or final A1 (not A1ft in main scheme). Equals 14.42... Equals 10.1.... For using Newton's second law cv Tractive - cv Friction Accept 4.59, 4.6(0)

5	(i)		Graph with 5 straight line segments and with v single valued. Line segment for car stage Line segment for walk stage Line segment for wait stage 2 line segments for motor-cycle stage	B1 B1 B1 B1 B1	'Wait' line segment may not be distinguishable from part of the t axis. Attempt at all lines segments fully straight. Mainly straight, ends on t-axis Horizontal below t-axis. Ignore linking to axis. Can be implied by gap between walk and motor-cycle stages Inverted V not U, mainly straight. Condone vertex below x intercept.
	(ii)	$d=12 / 8$ Deceleration is $1.5 \mathrm{~ms}^{-2}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Using gradient represents accn Or a $=-1.5 \mathrm{~ms}^{-2}$
	(iii)	$\begin{aligned} & t_{\text {walk }}=420 / 0.7 \\ & t_{\text {motorcycle }}=42 \\ & T=8+600+250+42=900 \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Using area represents displacement. Accept 600 Ignore method

6	(i)	$\begin{aligned} & T_{\mathrm{A}} \cos \alpha-T_{\mathrm{B}} \cos \beta=W \\ & T_{\mathrm{A}}=T_{\mathrm{B}}(=T) \\ & \cos \alpha>\cos \beta \rightarrow \alpha<\beta \end{aligned}$	M1 B1 A1 [3]	For resolving 3 forces vertically, condone Wg , sin May be implied or shown in diagram AG
	(ii)(a)	$T \sin \alpha+T \sin \beta=14$ $\sin \alpha=0.6$ and $\sin \beta=0.8$ Tension is 10 N	M1 DM1 A1 [3]	Resolve 3 forces horiz accept cos
	(ii)(b)	$\begin{aligned} & 10 \cos \alpha-10 \cos \beta=W \\ & \alpha=36.9^{\circ}, \beta=53.1^{\circ} \\ & W=2 \end{aligned}$ See appendix for solution based on resolving along $R A$ and $R B$.	M1 DM1 A1 ft [3]	Must use cv T, and W (not $W g$) Or $\cos \alpha=0.8$ and $\cos \beta=0.6$ SR -1 for assuming $\alpha+\beta=90^{\circ}$ ft for $T / 5$ (accept 1.99)
	(iii)	R is below B Tension is 1 N	B1 $\begin{equation*} \mathrm{B} 1 \mathrm{ft} \tag{2} \end{equation*}$	Accept R more than 0.5 m below A ft for $W / 2$ accept $W / 2$

7	(i)	Initial momentum $=0.15 \times 8+$ 0.5×2 Final momentum $=0.5 v$ $0.15 \times 8+0.5 \times 2=0.5 v$ (or $0.15 \times 8=0.5 \times(v-2)$) $v=4.4$ (m) $g \sin \alpha=(\pm)(m) a$ $a=(\pm) 4.9$ EITHER (see also part (ii)) $0=4.4^{2}-2 \times 4.9 \mathrm{~s}$ $\mathrm{s}=1.97$ or 1.98 m OR $\begin{aligned} & v^{2}=4.4^{2}-2 \times 4.9 \times 2 \\ & v^{2}=-0.24 \end{aligned}$ OR (see also part (ii)) $t=4.4 / 4.9$ ($=0.898$) with either $s=4.4 \times 0.898-0.5 \times 4.9 \times$ 0.898^{2} or $s=(4.4+0) / 2 \times$ 0.898 $\mathrm{s}=1.97$ or 1.98 m	B1 B1 M1 A1 M1 A1 M1 A1ft M1 A1ft M1 A1ft	[4]	(or loss in A's momentum = 0.15×8 B1 and gain in B's momentum $=$ $0.5(v-2)$ B1) For using the principle of conservation of momentum condone inclusion of g in all terms $\boldsymbol{S R}$ Awarded even if g in all terms Condone cos For using $v^{2}=u^{2}+2 a s$ with $v=$ 0 Accept $s<2$ iff $s=4.4^{2} /($ 2×4.9) For using $v^{2}=u^{2}+2 a s$ with $s=$ 2 Accept $v^{2}<0$ Both parts of method needed Accept s<2
	(ii)	$\begin{aligned} & 2=1 / 24.9 t_{\mathrm{A}}^{2} \\ & t_{\mathrm{A}}=0.904 \end{aligned}$ EITHER $\begin{aligned} & 2=(-4.4) t_{\mathrm{B}}+1 / 24.9 t_{\mathrm{B}}^{2} \\ & t_{\mathrm{B}}=\left(4 . 4 ! \oplus \left(4.4^{2}\right.\right. \\ & +4 \times 2.45 \times 2)) / 4.9 \\ & t_{\mathrm{B}}=2.17 \\ & t_{\mathrm{B}}-t_{\mathrm{A}}=(2.17-0.9)=1.27 \mathrm{~s} \end{aligned}$ OR $\begin{aligned} & t_{\mathrm{up}}=4.4 / 4.9(=0.898) \\ & (2+1.98)=0.5 \times 4.9 \times t_{\text {down }}{ }^{2} \\ & t_{\text {down }}=1.27 \\ & t_{\mathrm{B}}-t_{\mathrm{A}}=(0.9+1.27-0.9)=1.27 \mathrm{~s} \end{aligned}$ OR $0=4.4 t-1 / 24.9 t^{2}$ (i.e. approx 1.8 s to return to start) $\begin{aligned} & 2=4.4 t+4.9 t^{2} \\ & t=0.376 \\ & t_{\mathrm{B}} t_{\mathrm{A}}=1.796+0.376-0.9= \\ & 1.27 \mathrm{~s} \end{aligned}$	M1 A1 M1 M1 A1 A1 M1 M1 A1 A1 M1 M1 A1 A1		cv for acceleration Accept $0.903=<$ time $=<0.904$ Appropriate use of $s=u t+1 / 2$ $a t^{2}$ Correct method for solving QE 2.171... Or using $s_{\text {up }}$ to find $t_{\text {up }}$ $s=u t+1 / 2 a t^{2}$ with $\mathrm{cv} s$ in part (i) Not the final answer $s=u t+1 / 2 a t^{2} \text { with } s=0=1.796$

